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Privacy protection and data security have received a huge amount of attention these days due
to the increasing need to protect various sensitive information like credit card data, medical
data and so on. There are various ways to protect data, here we are interested in ways that may
as well retain its statistical uses to some extent. One such way is to mask a data with additive
or multiplicative noise, and to get back to certain desired parameters of the original
distribution from the knowledge of the noise distribution and masked data. In this article, we
discuss the estimation of any desired quantile of a quantitative data set, masked with additive
noise. We also propose a method to choose appropriate parameters for the noise distribution
and discuss advantages of this method over some existing methods.
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1. Introduction

In official Statistics, the main goal of most studies is to analyze a data set to extract different

statistics like mean, median, variance and so on, which may help in various statistical analyses.

However, in case the data is sensitive (e.g., income data, medical data, marksheet data etc.), it

may be completely impossible to publish it in its raw form. In such cases, statistical agencies

often release masked version of original data, sacrificing some information. Data obfuscation

refers to the type of data masking where some useful information about the complete data set

remains even after hiding the individual sensitive information. Therefore, the main objectives

of data obfuscation are (i) minimize risk of disclosure resulting from providing access to the

data, (ii) maximize the analytic usefulness of the data.

There are various ways of obfuscating data such as, “Top-coding”, “Grouping”,

“Adding Noise”, “Rank Swapping”, and so on. A detailed discussion on various ways of

obfuscating sensitive data may be found in the papers by Fuller (Fuller 1993) and Kim and

Karr (Kim and Karr 2013). Here, we deal with the obfuscation of data using multiplicative

or additive noise. A typical problem involves a true quantitative data set X1, X2 , : : : , Xn;

Y1,Y2, : : : ,Yn is a random sample from some known continuous distribution F(·), drawn

independent of {Xi, 1 # i # n}. Then the noised data looks like the following:

Zi ¼ Xi þ Yi; i ¼ 1; 2; : : : ; n ðAdditive Noise ModelÞ; or ð1Þ

Zi ¼ Xi:Yi; i ¼ 1; 2; : : : ; n ðMultiplicative Noise ModelÞ ð2Þ
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In case {Xi, 1 # i # n} is known or assumed to follow a certain distribution, it is enough

to estimate the parameters of the distribution as discussed in the papers by Fuller (Fuller

1993), Mukherjee and Duncan (Mukherjee and Duncan 1997), and Ki and Karr (Ki and

Karr 2013). If there is no distributional assumption on {Xi, 1 # i # n}, except it to be

continuous, estimating statistics like mean, variance or raw moments from multiplicative

noise model were studied by Zayatz (Zayatz et al. 2011). However, the estimation of

nonpolynomial statistics like quantiles may be a problem of concern. Some Bayesian

methods to do the same were discussed in the article by Sinha (Sinha et al. 2011). In the

article by Poole (Poole 1974) he discussed the estimation procedure of the Distribution

Curve of the true population from the data collected through randomized response,

randomized with multiplicative noise of a particular form.

However in all the above cases, authors have mainly concentrated on estimating the

quantiles from data, obfuscated with multiplicative noise. In our problem, we work on

estimating the quantiles in case the noise is additive instead of multiplicative. The goal of

our study is to suggest a procedure with “reasonable” masking of the data-set which may

as well return a “good” guess of the quantiles, (one would prefer if estimation procedures

of other statistics like mean, variance and so on, are also not harmed by the suggested

method). We find an estimate of the distribution function for Normal, Laplace and

Uniform errors which may be equated to 0 , a , 1 to find the required quantiles. A

similar problem was discussed by Fan (Fan 1991) on a much general basis popularly

known as the deconvolution problem. However, we present an alternative way to look at

the problem. We also propose (see Subsec. 2.5) a technique to choose the parameter for the

noise distribution (statement may be found in Proposition 2.4). This is a modest attempt at

the problem stated in the first paragraph of the introduction.

In Section 2 we describe our procedure with required proofs in the Appendix section, in

Section 3 we give some simulation results in support of our procedure. In Section 4 we

give a real life example to illustrate more. Finally in Sectioin 5 we conclude with some

discussions over the whole procedure.

2. Additive Noise Model: Obfuscation and Estimation

We have a data set {Xi, 1 # i # n} which is sensitive and hence cannot be released. We

add an error {Yi, 1 # i # n} to each value in the data set which comes from some known

distribution with cumulative distribution function F(·). Zi ¼ Xi þ Yi is the released data

known as obfuscated or masked data. F(·) is the obfuscating distribution.

Let G(·), H(·) be the cumulative distribution functions of X and Z respectively. We assume

that (i) X and Y are independent, (ii) X and Y(and hence Z) are continuous random variables.

Our aim is to find the quantiles of X from the knowledge of Z and F(·). Since we are

interested in all the quantiles, we may try estimating the whole distribution curve G(·) of X,

which can be used to find the required quantiles.

2.1. Basic Problem

Since the problem is to estimate the distribution function of X one may first think of

writing the cumulative distribution function of X, G(·) in terms of H(·) and F(·). But that
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will not be convenient since Z and Y are not independent. Instead we try writing H(·) in

terms of the others. For any real number z,

HðzÞ ¼ PðZ # zÞ

¼ PðX þ Y # zÞ

¼

ð1

21

PðX þ Y # zjY ¼ yÞf ð yÞdy

where f (·) denotes the probability density function of Y. Since X and Y are independent we

may write

HðzÞ ¼

ð1

21

PðX # z 2 yÞf ð yÞdy

¼

ð1

21

Gðz 2 yÞf ð yÞdy

Thus our main equation is,

HðzÞ ¼

ðþ1

21

Gðz 2 yÞ f ð yÞdy: ð3Þ

This is an integral equation with infinite range, where G(·) is the unknown function to be

solved for, f is known and H(·) is to be estimated from the data. Note that our equation says,

H is a convolution of f and G. It can alternatively be written as,

HðzÞ ¼

ðþ1

21

f ðz 2 yÞGð yÞdy ð4Þ

Various methods are known to solve integral equations of different kinds. In the

following subsections we will deal with some special cases that arise in practical life.

Forms of estimated G(x) are given for Uniform, Normal and Laplace Error (all assumed to

have zero mean). Gaussian Kernel and Silverman’s Rule of Thumb bandwidth were used

to estimate the densities. Then these forms of Ĝ xð Þ are equated to 0 , a ,1, to find the

ath quantile of X. Moreover we discuss (see Subsec. 2.5) the choice of appropriate

parameters of the Error Distributions which minimize the risk of disclosure and error in

estimation. As far as we know, this is a novel work of its kind for the stated purpose.

2.2. Uniform Error

The following result holds if Y is Uniform(0,a), that is, if the density function of Y is of the

following form,

f ð yÞ ¼
1=a; 0 , y , a

0; otherwise:

(
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Lemma 2.1. If h(·) is the density function of the obfuscated variable Z, then ;x [ R

GðxÞ ¼ ahðxÞ þ ahðx 2 aÞ þ ahðx 2 2aÞ þ · · ·

In our problem, h(·) is unknown; so instead we can use the kernel density estimate of h(·) to

get an estimate ĜðxÞ of G(x) for all x [ R. Then, equating ĜðxÞ ¼ a for 0 ,a ,1 we get

the ath quantile of X.

Note: If Y has 0 mean, i.e., Y ,Uniform 2 a
2
; a

2

� �
, the form of G(x) becomes

GðxÞ ¼ ah x 2
a

2

� �
þ ah x 2

3a

2

� �
þ ah x 2

5a

2

� �
þ · · ·

in a similar way.

2.3. Normal Error

Here f(x) ¼ fs (x) ¼ f (x, 0,s 2) for x [ R, where f(x,m,s 2) is the Normal density at

point x with mean m and variance s 2.

Note that if the mean is m – 0 then,

Z ¼ X þ Y ) Z 2 m ¼ X þ ðY 2 mÞ; Y 2 m has mean 0; Z 2 m is known:

So without loss of generality, the mean can be assumed to be zero. The following

Lemma 2.2 gives an estimated form of the distribution function of X.

Before stating the next Lemma we introduce the following assumption

(A1) The probability densities of X and Y are bounded.

We also let F(x,m,s 2) denote the cumulative distribution function of the normal

distribution with mean m and variance s 2, evaluated at the point x.

Lemma 2.2. Assume that assumption (A1) holds. Then if Y , Nð0;s2Þ, an estimate of

GðxÞ is,

ĜðxÞ ¼
1

n

Xn

j¼1

F x 2 Zj; 0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 2 s2
p� �

; ;x [ R; b . s

where b ¼ 1:06n21=5A,

A ¼ Min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dVarVarðZÞ;

IQRz

1:34

r !

dVarVarðZÞ ¼
1

n 2 1

Xn

i¼1

ðZi 2 �ZÞ2; �Z ¼
1

n

Xn

i¼1

Zi

and,

IQRðZÞ ¼ Interquantile range of Z ¼ Third quartile of Z 2 First quartile of Z:

Note: The restriction on s makes the result very weak since in most cases b .s is not

likely to happen. However if one uses a different Kernel to estimate the density, the
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restriction may not hold in such cases. In the next subsection, we would like to suggest an

alternative way to deal with this problem such that there is no bound on the choice of s.

2.4. Laplace Error

The main reason behind the choice of such Error distribution is because Laplace has an

“ordinary smooth density” (as defined by Fan 1991) unlike Normal or Cauchy distribution

which possess the supersmooth density, which results in an easy solution to the problem of

estimating G(x) with Gaussian Kernel without any restriction on the choice of parameter.

Lemma 2.3. An estimate of G(x), under assumption (A1) (defined in the statement of

Lemma 2.2), if Y , Laplace ð0;s2Þ, i.e.,

f ðxÞ¼
1

2s
e

2
x

s

			
			

;x[R is given by;

ĜðxÞ¼
1

n

Xn

j¼1

1þ
s2

b2

� �
Fðx;Zj;bÞ2

s2

b2

ððx2ZjÞ=b

21

u2FðuÞdu

8><
>:

9>=
>; ð5Þ

¼
1

n

Xn

j¼1

1þ
s2

b2

� �
Fðx;Zj;bÞ2

s2

b2
0:5 1þsignðx2ZjÞG 3

2
;1

� � ðx2ZjÞ
2

2b2

� �0
@

1
A

8<
:

9=
; ð6Þ

where Gða;bÞðxÞ is the cumulative distribution function of Gamma distribution with

parameters (a,b) at x.

Note: The density function of a Gamma distribution with parameters (a,b) is given below:

gða;bÞð yÞ ¼

1

GðaÞla
ya21e2ly; y . 0

0; otherwise:

8><
>:

where G(·) denotes the Gamma function.

2.5. Choice of Parameters of Error Distribution

It is to be noted that if the variance of the Error Distribution is very small compared to the range

of X, then the error behaves like a known constant which can be easily subtracted from Zj to get

a value very close to corresponding Xi. Hence a very small variance means no obfuscation at

all. On the other hand, a very large variance may increase the error in estimation to a large

extent. Hence, we need a perfect choice of the parameters of the Error Distribution to efficiently

deal with the whole problem. Towards that, we make the following observation.

After obfuscating a particular value Xi we cannot get it back from Zi ¼ Xi þ Yi, but

since we know the distribution of Yi, we will get a confidence interval for each Xi.

Assuming the mean of Yi is zero, that is, Zi and Xi has same mean, suppose for each Xi we

want a minimum spread of 1 with confidence 100(1 2 d)%.
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Proposition 2.4. For fixed d . 0 and 1 . 0 suppose we want a 100(12d)% Confidence

Interval to be (Zi21, Zi þ 1) (1 moderately large), then the parameter s of the Error

distribution can be taken as the solution of the equation

Fsð1Þ ¼ 1 2
d

2

under the condition that Fs (·) is the cumulative distribution function of a random variable

symmetric about 0.

Proof. Since (Zi – 1, Zi þ 1) is 100(1 2 d) % Confidence Interval for Xi,

P½Xi 1 ðZi 2 1; Zi þ 1Þ� ¼ 1 2 d

) PðjZi 2 Xij , 1Þ ¼ 1 2 d

) PðjYij , 1Þ ¼ 1 2 d

Since F(·) is symmetric around 0, we can write

2Fsð1Þ2 1 ¼ 1 2 d

) 2Fsð1Þ ¼ 2 2 d

) Fsð1Þ ¼ 1 2
d

2
:

Hence given 1 and d, we can find a value of s from the equation

Fsð1Þ ¼ 1 2
d

2
:

Special Cases

Laplace(0, s2) The c.d.f. is given by,

FsðxÞ ¼ 0:5þ 0:5signðxÞ 1 2 e
2
jxj

s

0
@

1
A

Hence from Proposition 2.4 the solution of s is

s ¼ 2
1

log d
:

Uniform(2 s
2
; s

2
) The c.d.f. is given by FsðxÞ ¼

xþs
2

s
. Hence from Proposition 2.4 the

solution of s is

s ¼
21

1 2 d

Note. For Normal Error, if the solution is less than the bandwidth of Z then only the process

works otherwise not. With 95% confidence, a choice of s is approximately 1/1.65.
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3. Some Simulation Results

In order to apply the above problem we simulate a non-normal sample of size n ¼ 2,000,

with IQR/1.34 < 1,000, and then add an error Yi to each sample unit Xi such that (Zi –1,

Zi þ 1) is a 95% C.I. for Xi. Parameter of the error distribution is chosen by the formula in

Proposition 2.4. For small 1 we apply Uniform, Normal and Laplace Errors to the sample,

while for larger 1, Normal is not applicable so we check results for only Uniform and

Laplace. First, we check if the obfuscation is good enough. It is obvious that obfuscation

becomes better as 1 increases. In addition, for increasing 1 we also check how the

estimation procedure works.

A sample of ten data points is taken from the data set and the corresponding obfuscated

values are given for different errors. In the following table 1 is taken to be 200 (which is

very small, since it is much smaller compared to the measure of dispersion of X ).

The following figure shows the graph of the true distribution curve {G(x), x [ R} along

with the ones estimated from obfuscated data. Table 2 will show estimates of the trueQ5

quantile values which is computed from the knowledge of G(x) (Here, G(x) is

Laplace(m ¼ 10; s ¼ 1,000) using the function qlaplace under package {rmutil} of R

3.3.2. The quantile values are calculated from data X1, X2; : : : , Xn using function

quantile. Also, estimated values of the quantiles are shown which we get by equating ĜðxÞ

with (a: 0 , a , 1) by an iterative search method using the function uniroot; found in the

package {stats} of R 3.3.2.

Note that the true and obfuscated values in Table 1 are quite close which makes it easier

for an intruder to guess the original value from the obfuscated one. However, the

estimation works quite well.

Now, we try increasing the value of 1. However, as the value increases the Normal

distribution is no longer an option as larger 1 will make s larger than the bandwidth of

corresponding Z.

The following Table 3 shows the true and obfuscated values of the same data points from

Table 1 for increasing 1. Figure 2 will show how the estimated curve of G(x) deteriorates

with increasing 1. Table 4 gives the estimated and true quantiles for increasing 1.

Note that as 1 increases, the obfuscation gets better but estimation gets worse, which is

quite intuitive since small 1 implies no masking at all. As increases, both Uniform and

Table 1. Showing true and obfuscated values for ten data points selected from the 2,000 data points, 1 5 200.

No. Data Point Uniform Laplace Normal

1 606.768 671.915 651.491 678.75
2 3139.892 3078.08 3166.548 3230.559
3 987.809 891.076 990.928 1023.493
4 2912.623 3120.068 2864.294 2714.819
5 21425.763 21369.556 21470.395 21518.552
6 2185.086 2305.841 268.098 2205.403
7 2940.958 21097.012 2897.075 2804.884
8 2955.503 2964.716 2979.366 21005.702
9 2224.565 246.007 2228.214 2304.326
10 2511.614 2470.031 2469.044 2597.995
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Laplace gives result unlike Normal but from the graph (Fig. 2) we can clearly see for larger

quantiles uniform gives very bad estimates since the estimate of G(x) at times even

becomes decreasing which is not at all desirable. However Laplace comparatively seems

to give better results compared to the Uniform ones. Also, theoretical explanation of the

drawback of using Uniform Error is discussed in Section 5. Hence we here prefer the use

of Laplace Error over Uniform and Normal for reasonably large 1.

Hence to investigate deeper into the statistical properties of such estimates, we note that the

estimate is consistent as is the estimate by Fan (Fan 1991). To evaluate other properties such as

the bias and mean square error in estimation, we find the monte carlo estimates of the bias and

root-mean-squared-error(RMSE) over a simulation of S error samples (We take S ¼ 500,800

and 1,000). The tables of estimates of bias and RMSE for growing 1 are presented below.

Compared to the dispersion of the data set (IQR ¼ 1:34 <1,000), the RMSE does not

seem to be very large for 1 ¼ 200; 500 or 1000. 1 ¼ 2,000 gives very large bias and RMSE

but that large 1 is rarely needed.

It can be easily observed that the bias and RMSE were consistent in the sense 500,800,

and 1,000 simulations resulted in approximately similar values for all the cells in the above

tables.

Observing the tables, we note that the main error in estimation comes from the bias of

the estimate. Hence, an estimation of bias for the above problem can be a very interesting

problem and a useful result for future research work.

But from this scenario it is not clear whether the estimator is consistent, that is, with

increasing n whether the bias decreases although from Fan (Fan 1991) we can easily see

that theoretically the estimate of G(x) is consistent for all x [ R. So, to investigate we

simulate some other samples X1, X2, : : : , Xn using the same distribution as before but

larger n (we take n ¼ 5,000, 10,000) and obfuscate using Laplace error similarly to find

the monte carlo estimates of bias and RMSE, using S ¼ 1,000.

One may easily observe from the tables (Table 7 and Table 8) that there is a decrease in

the value of absolute bias and RMSE with larger n. Hence, with increasing n, ideally, the

error tends to vanish.

4. A Real Life Example

To illustrate more, we consider a real life application of the problem. We collect a data set

of marks achieved by 445 students in the Masters of Statistics second year program of

Table 2. Estimated quantiles from obfuscated data, 1 ¼ 200.

a TRUE Original Uniform Laplace Normal

“0.1” 21599.438 21476.929 21525.415 21534.134 21512.133
“0.2” 2906.291 2847.771 2895.061 2900.945 2893.431
“0.3” 2500.826 2491.793 2521.976 2522.429 2525.321
“0.4” 2213.144 2224.8 2240.816 2243.329 2245.115
“0.5” 10 29.7 3.925 2.659 6.166
“0.6” 233.144 242.808 257.094 260.244 267.592
“0.7” 520.826 533.289 552.537 559.502 564.615
“0.8” 926.291 922.478 954.164 966.336 963.852
“0.9” 1619.438 1655.947 1687.02 1697.753 1698.098
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Indian Statistical Institute Kolkata over ten years 2006–2015. Now since marks is a

sensitive data, it cannot be released in its raw form. So we apply the above problem to this

Q6

data and try to find the results. Standard variation of the data was checked to be

approximately 100, so we took an 1 ¼ 200. The bandwidth values from Uniform and

Laplace data was found to be 48.68 and 41.15. The following Table 9 represents true and

obfuscated values of ten data points to show how the values are masked with Uniform and

Laplace Errors. Then from the obfuscated values the true distribution and quantiles are

estimated as shown in Figure 3 and Table 10 respectively.

In this problem s was chosen according as Proposition 2.4 with 1 ¼ 200. Without

access of the obfuscated data, all one knew about the marks of an individual was that it

ranged between 0 to 1,000. Consider the first individual in Table 9. Its masked value after

masking with Laplace(0,s 2) is 733.93. Now, we can say Xi [ (533:93; 933:93) with 95%

confidence. Hence a disclosure takes place here. Note that, as per our knowledge, Zi is the

best estimator of Xi from the available information. However, if there exists some

algorithm for the intruder with which it can find a better estimator of Xi using the

knowledge of the obfuscating distribution and obfuscated data, this disclosure risk may not

be valid (It can be easily shown that if true variance of Y is greater than n
n21

times the true

variance of X, then Ẑ is a better estimator of Xi than Zi, that is, the mean squared error of Ẑ

about Xi is less than that of Zi about Xi but such a case is rare as s usually does not need to
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Fig. 2. True and estimated distribution curves with increasing 1.
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be so large). Here Yi is the error in estimation and the risk of disclosure is nothing but the

probability that the error is very small. Hence,

The risk of disclosure with error less than d, is given by,

P½Zi 2 Xij , d� ¼ P½jYij , d�

For S ¼ 1,000 simulations, an estimate of this risk is

XS

s¼1
I½Zsi[ðXi2d;Xiþd Þ�

S

where Zsi is the masked value of Xi for sth simulation and I[A ] ¼ 1, if event A occurs and

zero otherwise. The following table shows estimates of disclosure risk for growing error

values at ten selected points (the points in Table 9), and also a column giving the true risk

value. We see the estimated risks are quite close to the theoretically determined risk at all

the selected points.

5. Conclusion

Observing the simulation results and also the real life example one can easily see that an

increase in the value of 1, that is, an increase in obfuscation results in weakly reliable

Table 9. True and obfuscated values for ten data points selected from the 445 data points, 1 ¼ 200.

No. TRUE Uniform Laplace

“1” 814 960.562 733.931
“2” 750 695.214 829.526
“3” 764 656.395 591.158
“4” 574 704.041 599.055
“5” 614 670.67 586.944
“6” 669 595.926 670.136
“7” 616 553.873 533.097
“8” 674 748.607 677.74
9” 714 595.295 658.648
“10” 740 883.885 764.591

1.0

0.8

0.6

0.4G
(x

)

0.2

0.0
0 200 400 600 800

TRUE
UNIFROM
LAPLACE

1000
x

Value of epsilon is 200

Fig. 3. Showing estimated distribution curve from TRUE and obfuscated data sets.
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estimates for both Laplace and Uniform Errors. However, we would prefer the use of

Laplace over Uniform Error since Uniform has a serious drawback, explained in the next

paragraph.

In the case of Uniform Error the estimate of G(x) is given by the expression,

ĜðxÞ ¼
a

n

Xn

j¼1

X1
m¼0

f x; Zj þ mþ
1

2

� �
a; b

� �

which is nondecreasing if,

ĝðxÞ ¼
a

n

Xn

j¼1

X1
m¼0

f 0 x; Zj þ mþ
1

2

� �
a; b

� �
$ 0;

that is if,

2
c

n

Xn

j¼1

X1
m¼0

x 2 Zj 2 mþ
1

2

� �
a

� �
e

2

x2Zj2 mþ
1

2

� �
a

� �2

2b 2 $ 0

where c is a positive constant.

However, this term may be negative for certain cases and hence ĜðxÞ can be decreasing

at times, which is not at all desirable since it is an estimate of cumulative distribution

function. When simulating we found this problem arising several times, while in case of

Laplace Error this problem never arose. However, theoretically Equation (5), resulting

from Laplace noise distribution, could not be proved to have a nondecreasing distribution

function either.

Here we have checked results for Uniform and Laplace distributions. However, the

choice of an optimal density function for obfuscation and estimation is yet not well

defined. It would be a challenging problem to define the optimal criterion and find a

density, which can satisfy the criterion. The same challenge goes for finding an optimal 1

(as defined in Subsec. 2.5) for a given data set (X1, X2 , : : : , Xn).

As discussed in Section 3, the error in estimation mainly comes from the bias of the

estimate. Hence, an estimation of bias and its correction can bring better results for the

problem.

Table 10. Showing estimation of quantiles from original and obfuscated data.

No. Original Uniform Laplace

“0.1” 580.8 578.394 555.663
“0.2” 612.8 622.305 596.067
“0.3” 645.2 650.741 633.059
“0.4” 675.6 673.521 664.011
“0.5” 700 695.237 693.693
“0.6” 727 720.346 734.52
“0.7” 750 762.636 770.46
“0.8” 786 831.202 809.933
“0.9” 826.6 888.999 879.513
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Moreover, as mentioned in Section 4, if the boundary values of the original data are

known, the obfuscation in the boundary region degrades. There is no known solution to

this problem.

Having obtained a quantile estimate, computation of a confidence interval for the

unknown population quantile can be an interesting problem for future work.

However, the problem discussed can be easily applied to many real life problems. The

technique used to solve the above problem can be applied to solve the equations for other

error distributions too. Unlike the historical technique to solve such problems given in Fan

(Fan 1991) this technique can be applied to cases where the characteristic function of the

Error distribution may take nonpositive value in some regions over the real line.

Appendix

Proof of Lemma 2.1

Proof. Putting the form of f ( y) in Equation (3), we have

HðzÞ ¼
1

a

ða

0

Gðz 2 yÞdy

Now differentiating with respect to z we have,

hðzÞ ¼
1

a
{GðzÞ2 Gðz 2 aÞ};

which gives,

GðzÞ ¼ ahðzÞ þ Gðz 2 aÞ:

Now, from this relation we have,

Gðz 2 aÞ ¼ ahðz 2 aÞ þ Gðz 2 2aÞ:

Inserting this in the expression for G(z) we find,

GðzÞ ¼ ahðzÞ þ ahðz 2 aÞ þ Gðz 2 2aÞ

Repeating this by putting the values of G(z 2 ma) for m ¼ 1, 2, : : : in a similar way we

have the given result.

Proof of Lemma 2.2

Proof. The lemma is proved using the following result from Polyanin and Manzhirov

(Polyanin and Manzhirov 2008).

Result: Consider the equation
Ð1

21
Kðx 2 tÞyðtÞdt ¼ f ðxÞ;21 , x , 1 where y(·) is the

unknown function to be determined. Suppose,

(i) f ðxÞ; yðxÞ [ L2ð21;1Þ

(ii) KðxÞ [ L1ð21;1Þ
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where the function space Lk(S) for some set S and integer k, is the set of all real-valued

functions f : S ! R;
Ð1

21
j f ðxÞj

k
dx , 1

n o
.

Then, yðxÞ ¼ 1
2p

Ð1

21

~fðuÞ
~KðuÞ

e iuxdu, where ~f is the Fourier Transform of f, ~K is the Fourier

Transform of K.

Now to apply the given result in our problem note that our equation is

HðzÞ ¼

ð1

21

Gð yÞfsðz 2 yÞdy ¼

ð1

21

Gðz 2 yÞfsð yÞdy

But H(·) and G(·) are not L2ð21;1Þ. So taking the derivative w.r.t. z, we get

hðzÞ ¼
d

dz

ð1

21

Gðz 2 yÞfsð yÞdy:

Now, since g(·) is bounded, for some real 0 , M ,1, we have,

d

dz
ðGðz 2 yÞfsð yÞÞ ¼ gðz 2 yÞfsð yÞ < Mfsð yÞ

Now
Ð1

21
Mfsð yÞdy ¼ M , 1: Hence we can interchange the integration and

differentiation sign which gives us,

hðzÞ ¼

ð1

21

gðz 2 yÞfsð yÞdy

Here, we have used the Leibniz rule for infinite range.

Now, since g(·) and h(·) are bounded by assumption (A1), they are L2 2 bounded by

Lemma 2.3 of the book “Deconvolution Problems in Non-Parametric Statistics” by

Meister (Meister 2009). Also, fs [ L1ð21;1Þ.

Hence, applying the last result, in our problem,

gðxÞ ¼
1

2p

ð1

21

~hðkÞ

fs
~ ðkÞ

e ikxdk

But h is not known. So, we replace it by ĥ, the Kernel Density Estimate of h using standard.

Gaussian Kernel and bandwidth selected by Silverman’s “Rule of Thumb”. The general

form of such kind of estimators with an arbitrary kernel function K(·) was discussed by Fan

(Fan 1991) where the kernel estimators of mixture densities were studied along with their

asymptotic properties. It is given by,

ĥðxÞ ¼
1

nb

Xn

j¼1

K
x 2 Zj

b

� �
ð7Þ
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where, KðxÞ ¼ 1ffiffiffiffi
2p
p e2x 2=2; b ¼ 1:06 n21

5A as defined in the statement of the Lemma.

Plugging in, we get,

ĥ
~
ðkÞ ¼

ð1

21

1

nb

Xn

j¼1

K
x 2 Zj

b

� �( )
e2ikxdx

¼
1

n

Xn

j¼1

e
2ikZj2

k 2b 2

2

Since, 1
b

Ð1

21
e2ikxK

x2Zj

b

� �
dx ¼ 1ffiffiffiffi

2p
p

b

Ð1

21
e2ikxe

2
ðx2Zj Þ

2

2b 2 dx which is the characteristic

function of a normal random variable with mean Zj and standard deviation b at the

point (2k) and we know that to be equal to e2ikZj2
k 2b 2

2 .

Also, note that,

fs
~ ðkÞ ¼

ð1

21

1ffiffiffiffiffiffi
2p
p

s
e2x 2=2s 2

e2ikxdx

¼ e

2k 2s 2

2

Therefore,
~hðkÞ
~fsðkÞ
¼

1
n

Pn

j¼1
e

2ikx2k 2b 2

2

e
2k 2s 2

2

¼ 1
n

Pn
j¼1 e2ikx2

k 2 ðb 22s 2 Þ
2 [ L2ð21;1Þ if b 2 2 s 2 . 0,

that is, b . s

If b . s; then,

ĝðxÞ ¼
1

2p

ð1

21

1

n

Xn

j¼1

e
2ikZj2

k 2ðb 22s 2Þ

2 e ixkdk

¼
1ffiffiffiffiffiffi

2p
p

n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 2 s2
p

Xn

j¼1

e
2
ðx2ZjÞ

2

2ðb22s 2Þ:

where we have changed the order of summation and integration. This is nothing but the

mean of n normal p.d.f.s with mean Zj and variance b2 2 s2. Hence we get the form given

in Lemma 2.2.

Proof of Lemma 2.3

Proof: Proceeding in the same way as in Lemma 2.2, we have

ĥ
~
ðkÞ ¼

1

n

Xn

j¼1

e
2ikZj2

k 2b 2

2

and, the Fourier transform at point k of the Laplacian error density with scale parameter s,

denoted as ~lsðkÞ, is given by,

~lsðkÞ ¼

ð1

21

1

2s
e2jxj=se2ikxdx ¼ ð1þ s2k 2Þ21
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Hence the ratio becomes

ĥ
~
ðkÞ

~lsðkÞ
¼

1

n

Xn

j¼1

ð1þ s2k 2Þe
2ikZj2

k 2b 2

2

Now this function is in L2ð21;1Þ ;b;s. After taking the inverse Fourier transform we

have,

ĝðxÞ ¼
1

n

Xn

j¼1

Ij;

where

Ij ¼
1

2p

ð1

21

ð1þ k2s2Þe
ikðx2ZjÞ2

k 2b 2

2 dk

¼ I1j þ I2j;

I1j ¼
1

2p

ð1

21

e
ikðx2ZjÞ2

k 2b 2

2 dk; and;

I2j ¼
1

2p

ð1

21

k 2s2e
ikðx2ZjÞ2

k 2b 2

2 dk:

Note that the integrand in I1j is nothing but a constant multiple of the characteristic

function of Nð0; 1=bÞ at ðx 2 ZjÞ and hence it can be easily shown that,

I1j ¼ fðx; Zj; bÞ

Note now that,

I2j ¼
s2

2p

ð1

21

k 2 e

2k 2b 2

2 {cosðkðx 2 ZjÞÞ þ isinðkðx 2 ZjÞÞ}dk

Since the sine function is odd and the cosine function is even we can write

I2j ¼
s2

p

ð1

0

cosðkðx 2 ZjÞÞk
2e

2k 2b 2

2 dk

Defining cj ¼
ffiffi
2
p

b
ðx 2 ZjÞ and making a change of variables we get the expression

I2j ¼
s2

p

ffiffiffi
2
p

b3

ð1

0

cos cj
ffiffiffi
y
p� � ffiffiffi

y
p

e2ydy
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Next, expanding cos cj
ffiffiffi
y
p� �

by a Taylor series and changing the order of summation

and integration we have

I2j ¼
s2

p

ffiffiffi
2
p

b3

X1
m¼0

ð21Þm
c2m

j

ð2mÞ!
G mþ

3

2

� �

where GðxÞ denotes the Gamma function evaluated at the point x. Using the properties of

the Gamma function that Gðxþ 1Þ ¼ xGðxÞ and G 1
2

� �
¼

ffiffiffiffi
p
p

we can further calculate

I2j ¼
s2

p

ffiffiffi
2
p

b3

X1
m¼0

ð21Þm
c2m

j

ð2mÞ!
mþ

1

2

� �
m 2

1

2

� �
: : :

1

2
G

1

2

� �

¼
s2

p

ffiffiffi
2
p

b3

X1
m¼0

ð21Þm
c2m

j

ð2mÞ!
mþ

1

2

� �
m 2

1

2

� �
: : :

1

2
G

1

2

� �

¼
s2ffiffiffiffi
p
p

ffiffiffi
2
p

b3

X1
m¼0

ð21Þm
c2m

j

22mm!

2mþ 1

2

¼
s2ffiffiffiffiffiffi
2p
p

b3
2
X1
m¼1

ð21Þm
c2m

j

22mðm 2 1Þ!
þ
X1
m¼0

ð21Þm
c2m

j

22mðmÞ!

( )

¼
s2ffiffiffiffiffiffi
2p
p

b3
2ð21Þ

cj

2

� �2

e
2

� cj

2

�2

þ e
2

� cj

2

�2( )

¼
s2ffiffiffiffiffiffi
2p
p

b3
e2ðcj=2Þ2 ½1 2 2ðcj=2Þ2�

¼
s2

b2
1 2

x 2 Zj

b

� �2
" #

fðx; Zj; bÞ

where we inserted the expression cj ¼
ffiffi
2
p

b
ðx 2 ZjÞ in the last step. Thus, we can conclude

that,

ĝðxÞ ¼ 1þ
s2

b2

� �
1

n

Xn

i¼1

fðx; Zj; bÞ

( )
2

s2

b2

1

n

Xn

i¼1

x 2 Zj

b

� �2

fðx; Zj; bÞ

Hence integrating ĝðuÞ over ð21; xÞ we get Equation (5). Moreover, making a simple

change of variable u 2

2
¼ y in the term

ð
x2Zj

b

21

u2fðuÞdu
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one can easily check it to be equal to

0:5þ 0:5*signðx 2 ZjÞGð3=2;1Þ
x 2 Zj

b

� �2

which is stated in Equation (6).
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